

Welcome to Automate’s Documentation!

Table of Contents

	Introduction
	What is Automate?

	Highlights

	“Hello World” in Automate

	Original application

	How to Install Automate?

	Automate Components

	Programming Automate Objects
	Programs

	Actuator Status Manipulation

	Program Features

	StatusObjects
	Creating Custom Sensors and Actuators

	StatusObject Definition

	Sensor Baseclass Definition

	Actuator Baseclass Definition

	Builtin Statusobject Types
	Builtin Sensors

	Builtin Actuators

	Callables
	Introduction

	Deriving Custom Callables

	Trigger and Target Collection

	Referring to Other Objects in Callables

	Callable Abstract Base Class definition

	Builtin Callables
	Builtin Callable Types

	Automate System
	Introduction

	Groups

	System State Saving and Restoring via Serialization

	SystemObject

	System Class Definition

	SystemObjects Class Definition

	Services
	Introduction

	Services Class Definitions

	Builtin Services

	Extensions
	Web User Interface for Automate

	WSGI Support for Automate

	Remote Procedure Call Support for Automate

	Arduino Support for Automate

	Raspberry Pi GPIO Support for Automate

	Making your own Automate Extensions
	Extension Development

	Index

Introduction

What is Automate?

Automate is a general purpose automatization library for Python.
Its objective is to offer convenient and robust object-oriented programming
framework for complex state machine systems. Automate can be used to design
complex automation systems, yet it is easy to learn and fun to use. It was
originally developed with home robotics/automatization projects in mind,
but is quite general in nature and one could find applications from various
fields that could take advantage of Automate. Automate can be embedded
in other Python software as a component, which runs its operations in
its own threads.

Highlights

	Supported hardware:
	Raspberry Pi GPIO input/output ports (Raspberry Pi GPIO Support for Automate via RPIO [http://pythonhosted.org/RPIO/] library)

	Arduino analog and digital input/output ports (Arduino Support for Automate via pyFirmata [https://github.com/tino/pyFirmata] library)

	Easy to write extensions to support other hardware, see Making your own Automate Extensions

	System State Saving and Restoring via Serialization

	Intelligent design:
	Comprehensively tested via py.test unit/integration tests

	Takes advantage of Traits [http://traits.readthedocs.org/en/4.5.0/] library, especially its
notification system.

	IPython [http://ipython.org] console to monitor, modify and control system on-the-fly

	Versatile function/callable library to write state program logic

	RPC and Websocket interfaces (provided by Remote Procedure Call Support for Automate and Web User Interface for Automate) to connect
between other applications or other Automate systems.

	Comprehensive and customizable Web User Interface via Web User Interface for Automate

	UML graphs can be drawn automaticlaly of the system (as can be seen in the examples of this documentation)

“Hello World” in Automate

Let us consider following short Automate program as a first example:

from automate import *

class MySystem(System):
 # HW swtich connected Raspberry Pi GPIO port 1
 hardware_switch = RpioSensor(port=1)
 # Switch that is controllable, for example, from WEB interface
 web_switch = UserBoolSensor()
 # Lamp relay that switches lamp on/off, connected to GPIO port 2
 lamp = RpioActuator(port=2)
 # Program that controls the system behaviour
 program = Program(
 active_condition=Or('web_switch', 'hardware_switch'),
 on_activate=SetStatus('lamp', True)
)

my_system = MySystem(
 services=[WebService()]
)

This simple example has two sensors hardware_switch, web_switch, actuator (lamp) and a program that
contains logic what to do and when. Here, lamp is switched on if either web_switch or hardware_switch has
status True. WebService with default settings is enabled so that user can
monitor system and set
status of web_switch. The following figure (generated via WebService interface)
illustrates the system in UML graph:

[image: _images/hello_world.svg]

Original application

Automate was originally developed in order to enable simple and robust way of programming
home automatization with Raspberry Pi [http://www.raspberrypi.org] minicomputer, to obtain
automatization and automatic monitoring of rather complex planted aquarium safety/controlling
system.

How to Install Automate?

Automate can be installed like ordinary python package. I recommend installation
in within virtual environment (see virtualenv [https://virtualenv.pypa.io/en/latest/]).

	(optional): Create and start using virtualenv:

mkvirtualenv automate
workon automate

	Install from pypi:

pip install automate

Optionally, you can specify some of the extras, i.e. web, rpc, raspberrypi, arduino:

pip install automate[web,rpc,raspberrypi,arduino]

or if you want them all:

pip install automate[all]

Automate Components

[image: Inheritance diagram of automate.program.Program, automate.program.DefaultProgram, automate.statusobject.StatusObject, automate.statusobject.AbstractSensor, automate.statusobject.AbstractActuator, automate.callable.AbstractCallable, automate.service.AbstractService]

Automate system is built of the following components:

	System (derived by user from System) binds all parts together into a single state machine

	Services (subclassed of AbstractService) provide
programming interfaces with user and devices that can be used by SystemObjects.

	SystemObjects (subclassed of SystemObject or ProgrammableSystemObject):
	Sensors (subclassed on AbstractSensor) are used as an interface to the (usually read-only)
state of device or software.

	Actuators (subclassed on AbstractActuator) are used as an interface to set/write the state of
device or software.

	Programs (subclassed on ProgrammableSystemObject) define the logic between
Sensors and Actuators.
They are used to control statuses of Actuators, by rules that are programmed by using special
Callables (subclasses of AbstractCallable) objects that depend on statuses of
Sensors and other components. Also Sensors and Actuators are often subclassed from
ProgrammableSystemObject so
they also have similar features by themselves. Depending on the application, however, it might (or might not)
improve readability if plain Program component is used.

All Automate components are derived from HasTraits [http://traits.readthedocs.io/en/4.5.0/traits_api_reference/has_traits.html#traits.has_traits.HasTraits], provided by
Traits library, which provides automatic notification of attribute changes, which is used
extensively in Automate. Due to traits, all Automate components are configured by passing
attribute names as keyword arguments in object initialization (see for example attributes
pin
and
dev traits of
ArduinoDigitalActuator
in the example below).

Automate system is written by subclassing System and adding there desired
SystemObject as its attributes, such as in the following example:

from automate import *
class MySystem(System):
 mysensor = FloatSensor()
 myactuator = ArduinoDigitalActuator(pin=13, dev=0)
 myprogram = Program()
 ...

After defining the system, it can be instantiated. There, services with their necessary arguments
can be explicitly defined as follows:

mysys = MySystem(services=[WebService(http_port=8080), ArduinoService(dev='/dev/ttyS0')])

Some services (those that have autoload atribute set to True)
do not need to be explicitly defined. For example,
ArduinoService would be used automatically
loaded because of the usage of ArduinoDigitalActuator,
with default settings (dev='/dev/ttyUSB0'). Instantiating
System will launch IPython shell to access the system internals from the command line. This can be prevented, if
necessary, by defining keyword argument exclude_services as
['TextUIService'], which disables autoloading of
TextUIService. For further information about services, see Services.

Programming Automate Objects

Programs

Program features are defined in ProgrammableSystemObject class.
Program, DefaultProgram and
StatusObject classes are subclassed
from ProgrammableSystemObject, as can be seen in the following
inheritance diagram.

[image: Inheritance diagram of automate.program.Program, automate.program.DefaultProgram, automate.statusobject.StatusObject, automate.statusobject.AbstractSensor, automate.statusobject.AbstractActuator]

Programs are used to define the logic on which system operates. Program behavior is determined by the conditions
(active_condition,
update_condition) and actions
(on_activate,
on_update,
on_deactivate),
that are of AbstractCallable
type. Callables are special objects that are used to implement the actual programming of Automate program objects
(see Callables). There are many special Callable classes to perform different operations
(see Builtin Callables) and it is also easy to develop your own Callables
(see Deriving Custom Callables).

All Sensors and Actuators that affect the return value of a condition callable,
are triggers of a Callable. All actuators (and writeable sensors) that
a callable may change, are targets. Whenever any of the
triggers status change, programs
conditions are automatically updated and actions are taken if appropriate condition evaluates
as True.

Actions and conditions are used as follows. Programs can be either active or inactive depending on
active_condition. When program actives
(i.e. active_condition changes to True),
on_activate
action is called. When program deactivates,
on_deactivate,
action is called, correspondingly.
When program is active, its targets can be continuously manipulated by
on_update
callable, which
is called whenever update_condition evaluates as True.

Actuator Status Manipulation

Program can control status
of one or more actuators. Programs manipulate Actuator statuses the following way:

	One or more programs can control state of the same Actuator. Each program has
priority (floating point number), so that
the actual status of Actuator is determined
by program with highest priority

	If highest priority program deactivates, the control of Actuator status is moved
to the the second-highest priority active program.

	If there are no other Program, each Actuator has also one DefaultProgram, which then
takes over Actuator control.

The following example application illustrates the priorities:

from automate import *
class MySystem(System):
 low_prio_prg = UserBoolSensor(priority=-5,
 active_condition=Value('low_prio_prg'),
 on_activate=SetStatus('actuator', 1.0),
 default=True,
)
 med_prio_prg = UserBoolSensor(priority=1,
 active_condition=Value('med_prio_prg'),
 on_activate=SetStatus('actuator', 2.0),
 default=True,
)
 high_prio_prg = UserBoolSensor(priority=5,
 active_condition=Value('high_prio_prg'),
 on_activate=SetStatus('actuator', 3.0),
 default=True,
)
 inactive_high_prio_prg = UserBoolSensor(priority=6,
 active_condition=Value('inactive_high_prio_prg'),
 on_activate=SetStatus('actuator', 4.0),
 default=False,
)

 actuator = FloatActuator()

ms = MySystem(services=[WebService()])

[image: _images/program.svg]In this application, four programs (three manually defined programs and DefaultProgram
dp_actuator) are active for actuator.
The actual status of actuator (now: 3.0) is determined by highest priority program.
If high_prio_prog goes inactive (i.e. if its
status is changed to False):

high_prio_prg.status = False

the status is then determined by med_prio_prg (=> 2.0). And so on. All the active programs
for actuator are visible in UML diagram.
Red arrow shows the dominating program, blue arrows show the other non-dominating active programs and gray arrows
show the inactive programs that have the actuator as a target (i.e. if they are activated, they will manipulate
the status of the actuator). low_prio_prg can never manipulate actuator status as its priority is lower than
default program dp_actuator priority.

Program Features

Program features are defined in ProgrammableSystemObject class. Its definition is as follows:

Note

Unfortunately, due to current Sphinx autodoc limitation, all trait types are displayed in this
documentation as None. For the real trait types, please see the source fode.

	
class automate.program.ProgrammableSystemObject(*args, **kwargs)

	System object with standard program features (i.e. conditions & actions).

	
active_condition = None

	A condition Callable which determines the condition, when the program is activated. Program deactivates, when
condition turns to False. When program is activated, on_activate action is executed. When program
deactivates. on_deactivate is executed.

	
on_activate = None

	An action Callable to be executed when Program actives.

	
on_deactivate = None

	An action Callable to be executed when Program deactivates.

	
update_condition = None

	When program is active, this is the condition Callable that must equal to True in order to
on_update action to be executed. Whenever a trigger is changed, this condition is checked and
if True, on_update is executed.

	
on_update = None

	Action Callable to be executed if Program is active and update_condition is True.

	
priority = None

	When programs sets Actuator status, the actual status of Actuator is determined by a program that has highest
priority. Lower priority programs are stacked and used only if higher priority programs are deactivated.

	
active = None

	Is program active? Automatically changed. In UIs you can fake the program active status by changing this.
Normally do not change manually.

	
status = None

	Status property is introduced to have interface compability with Status objects.
For plain Programs, status equals to the result of its active condition Callable.

	
actual_triggers = None

	(read-only property) Set of triggers, that cause this Program conditions to be checked
(and actions to be executed). This data is updated from custom triggers list, conditions and actions.

	
actual_targets = None

	(read-only property) Set of targets that this Program might touch. This data is updated
from custom targets list and actions.

	
triggers = None

	Custom set of additional triggers, whose status change will trigger this Program conditions/actions

	
exclude_triggers = None

	Triggers in this set do not trigger the program actions/conditions even if they are introduced by
Callables etc.

	
targets = None

	Additional targets. Not usually needed, but if you want to set status for some reason by some custom function,
for example, then you need to use this.

StatusObjects

[image: Inheritance diagram of automate.statusobject.StatusObject, automate.statusobject.AbstractSensor, automate.statusobject.AbstractActuator]

Actuators (AbstractActuator) and
sensors (AbstractSensor)
are subclassed of StatusObject.
The most important property is status,
which may be of various data types, depending of the implementation defined in subclasses.
Type of status is determined by _status trait.

There are couple of useful features in StatusObjects that may be used to affect when status
is really changed. These are accessible via the following attributes:

	safety_delay and safety_mode
can be used to define a minimum delay between status changes (“safety” ~ some devices might break if changed with big frequency)

	change_delay and change_mode can be used
to define a delay which (always) takes place before status is changed.

Here, modes are one of 'rising', 'falling', 'both', default being 'rising'. To disable
functionality completely, set corresponding delay parameter to zero. Functions are
described below.

Creating Custom Sensors and Actuators

Custom actuators and sensors can be easiliy written based on
AbstractActuator and AbstractSensor
classes, respectively.

As an example, we will define one of each:

imports from your own library that you are using to define your sensor & actuator
from mylibrary import (setup_data_changed_callback,
 fetch_data_from_my_datasource,
 initialize_my_actuator_device,
 change_status_in_my_actuator_device)

class MySensor(AbstractSensor):
 """
 Let us assume that you have your own library which has a status that you
 want to track in your Automate program.
 """
 # define your status data type
 _status = CBool
 def setup(self):
 setup_my_datasource()
 # we tell our library that update_status need to be called when status is
 # changed. We could use self.set_status directly, if library can pass
 # new status as an argument.
 setup_data_changed_callback(self.update_status)
 def update_status(self):
 # fetch new status from your datasource (this function is called by
 # your library)
 self.status = fetch_data_from_your_datasource()
 def cleanup(self):
 # define this if you need to clean things up when program is stopped
 pass

class MyActuator(AbstractActuator):
 # define your status data type. Transient=True is a good idea because
 # actuator status is normally determined by other values (sensors & programs etc)
 _status = CFloat(transient=True)
 def setup(self):
 initialize_my_actuator_device()
 def _status_changed(self):
 chagnge_status_in_my_actuator_device(self.status)

For more examples, look
builtin_sensors and
builtin_actuators. For more examples, see also Extensions,
especially support modules for Arduino and Raspberry Pi IO devices)

StatusObject Definition

	
class automate.statusobject.StatusObject(*args, **kwargs)

	Baseclass for Sensors and Actuators

	
safety_delay = None

	Determines minimum time required for switching. State change is then delayed if necessary.

	
safety_mode = None

	Determines when safety_delay needs to be taken into account: when status is
rising, falling or both.

	
change_delay = None

	Similar to safety_delay, but just delays change to make sure that events shorter
than change_delay are not taken into account

	
change_mode = None

	As safety_mode, but for change_delay

	
silent = None

	Do not emit actuator status changes into logs

	
debug = None

	Print more debugging information into logs

	
changing = None

	(property) Is delayed change taking place at the moment?

	
is_program

	A property which can be used to check if StatusObject uses program features or not.

	
status = None

	Status of the object.

	
get_status_display(**kwargs)

	Define how status is displayed in UIs (add units etc.).

	
get_as_datadict()

	Get data of this object as a data dictionary. Used by websocket service.

	
set_status(new_status, origin=None, force=False)

	For sensors, this is synonymous to:

sensor.status = new_status

For (non-slave) actuators, origin argument (i.e. is the program that is
changing the status) need to be given,

	
update_status()

	In sensors: implement particular value reading from device etc. here (this calls set_status(value)).
In actuators: set value in particular device.
Implement in subclasses.

	
activate_program(program)

	When program controlling this object activates, it calls this function.

	
deactivate_program(program)

	When program controlling this object deactivates, it calls this function.

	
get_program_status(program)

	Determine status of this object set by a particular program.
Useful only for Actuators but defined here for interface compatibility.

Sensor Baseclass Definition

[image: Inheritance diagram of automate.statusobject.AbstractSensor]

	
class automate.statusobject.AbstractSensor(*args, **kwargs)

	Base class for all sensors

	
user_editable = None

	Is sensor user-editable in UIs. This variable is meant for per-instance tuning for Sensors,
whereas editable is for per-class adjustment.

	
default = None

	Default value for status

	
reset_delay = None

	If non-zero, Sensor status will be reset to default after defined time (in seconds).

	
silent = None

	Do not log status changes

	
set_status(status, origin=None, force=False)

	Compatibility to actuator class.
Also SetStatus
callable can be used for sensors too, if so desired.

	
update_status()

	A method to read and update actual status. Implement it in subclasses, if necessary

Actuator Baseclass Definition

[image: Inheritance diagram of automate.statusobject.AbstractActuator]

	
class automate.statusobject.AbstractActuator(*args, **kwargs)

	Base class for all actuators.

	
default = None

	Default value for status. For actuators, this is set by automatically created
DefaultProgram dp_actuatorname

	
slave = None

	If True, actual status can be set by any program anytime without restrictions.

	
program = None

	A property giving current program governing the status of this actuator (program that has the highest priority)

	
priorities = None

	This dictionary can be used to override program priorities.

Note

Keys here must be program names, (not Program instances).

	
default_program = None

	Reference to actuators DefaultProgram

	
set_status(status, origin=None, force=False)

	For programs, to set current status of the actuator. Each
active program has its status in program_stack
dictionary and the highest priority is realized in the actuator

	
activate_program(program)

	Called by program which desires to manipulate this actuator, when it is activated.

	
deactivate_program(program)

	Called by program, when it is deactivated.

	
update_program_stack()

	Update program_stack. Used by programs
_priority_changed attribute to reset ordering.

	
get_program_status(prog)

	Give status defined by given program prog

	
program_stack = None

	Program stack of current programs, sorted automatically by program priority.

	
program_status = None

	Dictionary containing statuses set by each active program

Builtin Statusobject Types

Here are the definitions for the builtin statusobject types (sensors and actuators).
More types are available in Extensions.

Builtin Sensors

Module for various Sensor classes.

	
class automate.sensors.builtin_sensors.UserAnySensor(*args, **kwargs)

	User editable sensor type that accepts values of any types

	
class automate.sensors.builtin_sensors.UserBoolSensor(*args, **kwargs)

	Boolean-valued user-editable sensor

	
class automate.sensors.builtin_sensors.UserEventSensor(*args, **kwargs)

	Boolean-valued user-editable sensor suitable for using for singular events.

After status has been changed to True, it changes automatically its status
back to False.

	
class automate.sensors.builtin_sensors.AbstractNumericSensor(*args, **kwargs)

	Abstract class for numeric sensor types, that allows limiting
value within a specific range.

If limiting values (value_min, value_max) are used, value that exceeds
these limits, is clipped to the range.

	
value_min = None

	Minimum allowed value for status

	
value_max = None

	Maximum allowed value for status

	
class automate.sensors.builtin_sensors.UserIntSensor(*args, **kwargs)

	Integer-valued user-editable sensor

	
class automate.sensors.builtin_sensors.UserFloatSensor(*args, **kwargs)

	Float-valued user-editable sensor

	
class automate.sensors.builtin_sensors.UserStrSensor(*args, **kwargs)

	String-valued user-editable sensor

	
class automate.sensors.builtin_sensors.CronTimerSensor(*args, **kwargs)

	Scheduled start/stop timer. Both start and stop times
are configured by cron-type string (see man 5 crontab for description of the
definition format).

	
timer_on = None

	Semicolon separated lists of cron-compatible strings that indicate
when to switch status to True

	
timer_off = None

	Semicolon separated lists of cron-compatible strings that indicate
when to switch status to False

	
class automate.sensors.builtin_sensors.FileChangeSensor(*args, **kwargs)

	Sensor that detects file changes on filesystem.
Integer valued status is incremented by each change.

	
filename = None

	Name of file or directory to monitor

	
watch_flags = None

	PyInotify flags to configure what file change events to monitor

	
class automate.sensors.builtin_sensors.AbstractPollingSensor(*args, **kwargs)

	Abstract baseclass for sensor that polls periodically its status

	
interval = None

	How often to do polling

	
poll_active = None

	This can be used to enable/disable polling

	
class automate.sensors.builtin_sensors.PollingSensor(*args, **kwargs)

	Polling sensor that uses a Callable when setting the status of the sensor.

	
status_updater = None

	Return value of this Callable is used to set the status of the sensor when polling

	
type = None

	If set, typeconversion to this is used. Can be any function or type.

	
class automate.sensors.builtin_sensors.IntervalTimerSensor(*args, **kwargs)

	Sensor that switches status between True and False periodically.

	
class automate.sensors.builtin_sensors.SocketSensor(*args, **kwargs)

	Sensor that reads a TCP socket.

Over TCP port, it reads data per lines and tries to set the status of the sensor
to the value specified by the line. If content of the line is ‘close’, then connection
is dropped.

	
host = None

	Hostname/IP to listen. Use '0.0.0.0' to listen all interfaces.

	
port = None

	Port to listen

	
stop = None

	set to True to tell SocketSensor to stop listening to port

	
class automate.sensors.builtin_sensors.ShellSensor(*args, **kwargs)

	Run a shell command and follow its output. Status is set according to output, which is
filtered through custome filter function.

	
cmd = None

	Command can be, for example, ‘tail -f logfile.log’, which is convenient approach to follow log files.

	
caller = None

	If this is set to true, caller object is passed to the filter function as second argument

	
filter = None

	Filter function, which must be a generator, such as for example:

def filter(queue):
 while True:
 line = queue.get()
 if line == 'EOF':
 break
 yield line

or a simple line-by-line filter:

def filter(line):
 return processed(line)

Builtin Actuators

Module for builtin Actuator classes

	
class automate.actuators.builtin_actuators.BoolActuator(*args, **kwargs)

	Boolean valued actuator

	
class automate.actuators.builtin_actuators.IntActuator(*args, **kwargs)

	Integer valued actuator

	
class automate.actuators.builtin_actuators.FloatActuator(*args, **kwargs)

	Floating point valued actuator

	
class automate.actuators.builtin_actuators.AbstractInterpolatingActuator(*args, **kwargs)

	Abstract base class for interpolating actuators.

	
change_frequency = None

	How often to update status (as frequency)

	
slave_actuator = None

	Slave actuator, that does the actual work (set .slave attribute to True in slave actuator)

	
class automate.actuators.builtin_actuators.ConstantSpeedActuator(*args, **kwargs)

	Change slave status with constant speed

	
speed = None

	Status change speed (change / second)

	
class automate.actuators.builtin_actuators.ConstantTimeActuator(*args, **kwargs)

	Change slave status in constant time

	
change_time = None

	Time that is needed for change

Callables

Introduction

Callables are used like a small programming language to define the programming logic within the
Automate system. All classes derived from ProgrammableSystemObject have five
attributes that accept Callable type objects:

	Conditions
	active_condition

	update_condition

	Actions
	on_activate

	on_update

	on_deactivate

Conditions determine when and actions, correspondingly, what to do.

Actions are triggered by triggers that are Sensors and Actuators. Triggers are collected
from Callables (conditions and actions) automatically, and their status changes are subscribed and followed
automatically by a
ProgrammableSystemObject. Thus, condition statuses are evaluated automatically, and
actions are executed based on condition statuses.

Let us take a look at a small example that uses conditions and actions:

from automate import *

class CounterClock(System):
 active_switch = UserBoolSensor()
 periodical = IntervalTimerSensor(interval=1)

 target_actuator = IntActuator()

 prog = Program(
 active_condition = Value(active_switch),
 on_activate = SetStatus(target_actuator, 0),
 on_update = SetStatus(target_actuator,
 target_actuator + 1),
 triggers = [periodical],
 exclude_triggers = [target_actuator],
)

s = CounterClock(services=[WebService(read_only=False)])

[image: _images/callables.svg]When user has switched active_switch sensor to True, this simple program will start adding +1 to target_actuator value every
second. Because periodical is not used as a trigger in any action/condition, we need to explicitly define it as a
trigger with triggers attribute. Correspondingly, target_actuator is automatically collected as prog’s trigger (because
it is the second argument of SetStatus), so we need to explicitly exclude it with exclude_triggers attribute.

Tip

Try the code yourself! Just cpaste the code into your IPython shell and go to http://localhost:8080 in your browser!
Screenshot:

[image: _images/counter_app.png]

Deriving Custom Callables

A collection of useful Callables is provided by builtin_callables module.
It is also easy to derive custom callables from AbstractCallable baseclass.
For most cases it is enough to re-define call() method.

If Callable utilizes threads (like
Delay,
WaitUntil and
While)
and continues as an background process after returning from call method, it is also necessary
to define cancel() that notifies threads that their processing
must be stopped. These threaded Callables can store their threads and other information in
state dictionary, which stores information per
caller Program. Per-caller state information is fetched via
get_state(). After data is no longer needed, it must be cleared with
del_state() method.

Arguments given to Callable are stored in
_args and keyword arguments in
_kwargs. There are the following shortcuts that may
be used:
obj,
value and
objects. When accessing these, it is necessary (almost) always
to use call_eval() method, which evaluates concurrent status value
out of Callable, StatusObject, or string that represents name of an object residing in System namespace.
See more in the following section.

Trigger and Target Collection

Triggers and targets are automatically collected from Callables recursively.
All Callable types can specify which arguments are considered as triggers and which
are considered as targets, by defining
_give_triggers() and
_give_targets(), correspondingly.

As a general rule, Callable should not consider criteria conditions as triggers
(for example the conditions of
If,
Switch
etc).

Referring to Other Objects in Callables

Various system objects can be referred either by name (string), or by object references.
Name is preferred, because it allows to refer to objects that are defined in different
scopes (i.e. those that are defined either in Groups or later in the code).

If desired, automatic name referencing can be also disabled by setting
allow_name_referencing False. Then it is possible
to refer to other objects by using special construct Object(‘name’).

All variables passed to Callables are/must be evaluated through
call_eval() method, i.e.
if Callables are used as arguments, they are evaluated by their
call() method
and StatusObject‘s status attribute is used, respectively.

Callable Abstract Base Class definition

Callable classes are are subclassed of AbstractCallable.

	
class automate.callable.AbstractCallable(*args, **kwargs)

	A base class for subclassing Callables that are used in Program conditions and action attributes.

Callables are configured by giving them arguments and keyword arguments.They must always define call()
method which defines their functionality.

	
triggers = None

	Property that gives set of all triggers of this callable and it’s children callables.
Triggers are all those StatusObjects that alter the status (return value of call()) of
Callable.

	
targets = None

	Property that gives set of all targets of this callable and it’s children callables. Targets are
all those StatusObjects of which status the callable might alter in call().

	
status = None

	Read-only status property of the callable. Usefull only when callable is used as a condition.
This automatically depends on all the StatusObjects below the Callable tree.

	
state = None

	State dictionary that is used by call() and cancel() if some state variables are needed to be saved
Remember to clean data in subclasses when it is no longer needed.

	
get_state(caller)

	Get per-program state.

	
del_state(caller)

	Delete per-program state.

	
on_setup_callable = None

	Event that can be used to execute code right after callable setup. See OfType.
Something that needs to be done manually this way, because Traits does not allow
defining the order of subscribed function calls.

	
call_eval(value, caller, return_value=True, **kwargs)

	Value might be either name registered in System namespace, or object, either
StatusObject or Callable. If Callable, evaluate call() method. If StatusObject,
return status.

	
setup_callable_system(system, init=False)

	This function basically sets up system, if it is not yet set up. After that,
other Callable initialization actions are performed.

	Parameters:	init – value True is given when running this at the initialization phase. Then system
attribute is set already, but callable needs to be initialized otherwise.

	
call(*args, **kwargs)

	The basic functionality of the Callable is implemented in this function.
Needs to be defined in derived subclasses.

If callable is used as a Program condition, this must return the value of the condition
(see for example conditions And, Sum etc.), otherwise return value is optional.

	
objects

	Shortcut to _args.

	
obj

	Shortcut property to the first stored object.

	
value

	Shortcut property to the second stored object.

	
name_to_system_object(value)

	Return object for given name registered in System namespace.

	
collect(target)

	Recursively collect all potential triggers/targets in this node and its children.
Define targets and triggers of this particular callable in _give_triggers()
and _give_targets().

	Parameters:	target (str [https://docs.python.org/2/library/functions.html#str]) – valid values: 'targets' and 'triggers'

	
children

	A property giving a generator that goes through all the children of this Callable (not recursive)

	
_give_triggers()

	Give all triggers of this object (non-recursive)

	
_give_targets()

	Give all targets of this object (non-recursive)

	
cancel(caller)

	Recursively cancel all threaded background processes of this Callable.
This is called automatically for actions if program deactivates.

	
give_str()

	Give string representation of the callable.

	
give_str_indented(tags=False)

	Give indented string representation of the callable.
This is used in Web User Interface for Automate.

Builtin Callables

Module builtin_callables provides classes that may be used to various purposes
in Automate Program, in condition and action attributes.
They are loaded automatically into automate.callables along with callables from possible installed extensions.

Builtin Callable Types

	
class automate.callables.builtin_callables.Empty(*args, **kwargs)

	Do nothing but return None. Default action in Programs.

Usage:

Empty()

	
class automate.callables.builtin_callables.AbstractAction(*args, **kwargs)

	Abstract base class for actions (i.e. callables that do something but
do not necessarily return anything.

	
class automate.callables.builtin_callables.Attrib(*args, **kwargs)

	Give specified attribute of a object.

	Parameters:	bool (no_eval) – if True, evaluation of object is skipped – use this to access attributes of SystemObjects

Usage & example:

Attrib(obj, 'attributename')
Attrib(sensor_name, 'status', no_eval=True)

	
class automate.callables.builtin_callables.Method(*args, **kwargs)

	Call method in an object with specified args

Usage:

Method(obj, 'methodname')

	
class automate.callables.builtin_callables.Func(*args, **kwargs)

	Call function with given arguments.

Usage & example:

Func(function, *args, **kwargs)
Func(time.sleep, 2)

	Parameters:	add_caller (bool [https://docs.python.org/2/library/functions.html#bool]) – if True, then caller program is passed as first argument.

	
class automate.callables.builtin_callables.OnlyTriggers(*args, **kwargs)

	Baseclass for actions that do not have any targets (i.e. almost all actions).

	
class automate.callables.builtin_callables.Log(*args, **kwargs)

	Print callable argument outputs / other arguments to the log.

Usage:

Log(object1, object2, 'string1'...)

	Parameters:	log_level (str [https://docs.python.org/2/library/functions.html#str]) – Log level (i.e. logging function name) (default ‘info’)

	
class automate.callables.builtin_callables.Debug(*args, **kwargs)

	Same as Log but with debug logging level.

	
class automate.callables.builtin_callables.ToStr(*args, **kwargs)

	Return string representation of given arguments evaluated.
Usage:

ToStr('formatstring {} {}', callable1, statusobject1)

	Parameters:	no_sub (bool [https://docs.python.org/2/library/functions.html#bool]) – if True, removes format string from argument list. Then usage is simply:

ToStr(callable1, statusobject1, no_sub=True)

	
class automate.callables.builtin_callables.Eval(*args, **kwargs)

	Execute python command given as a string with eval (or exec).

Usage:

Eval("print time.{param}()", pre_exec="import time", param="time")

First argument: python command to be evaluated. If it can be evaluated by
eval() then return value is the evaluated value. Otherwise, exec() is used and True
is returned.

	Parameters:	
	pre_exec (str [https://docs.python.org/2/library/functions.html#str]) – pre-execution string. For example necessary import commands.

	namespace (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Namespace. Defaults to locals() in builtin_callables.

Optionally, other keyword arguments can be given, and they are replaced in the first argument
by format().

See also (and prefer using): Func

	
class automate.callables.builtin_callables.Exec(*args, **kwargs)

	Synonym to Eval

	
class automate.callables.builtin_callables.GetService(*args, **kwargs)

	Get service by name and number.

Usage:

GetService(name)
GetService(name, number)

Usage examples:

GetService('WebService')
GetService('WebService', 1)

	
class automate.callables.builtin_callables.ReloadService(*args, **kwargs)

	Reload given service.

Usage:

ReloadService(name, number)
ReloadService(name)

Usage examples:

ReloadService('WebService', 0)
ReloadService('ArduinoService')

	
class automate.callables.builtin_callables.Shell(*args, **kwargs)

	Execute shell command and return string value

	Parameters:	
	no_wait (bool [https://docs.python.org/2/library/functions.html#bool]) – if True, execute shell command in new thread and return pid

	output (bool [https://docs.python.org/2/library/functions.html#bool]) – if True, execute will return the output written to stdout by shell command. By default,
execution status (integer) is returned.

	input (str [https://docs.python.org/2/library/functions.html#str]) – if given, input is passed to stdin of the given shell command.

Usage examples:

Shell('/bin/echo test', output=True) # returns 'test'
Shell('mplayer something.mp3', no_wait=True) # returns PID of mplayer
 # process that keeps running
Shell('/bin/cat', input='test', output=True) # returns 'test'.

	
class automate.callables.builtin_callables.SetStatus(*args, **kwargs)

	Set sensor or actuator value

Usage:

SetStatus(target, source)
sets status of target to the status of source.
SetStatus(target, source, Force=True)
sets status to hardware level even if it is not changed
SetStatus([actuator1, actuator2], [sensor1, sensor2])
sets status of actuator 1 to status of sensor1 and
status of actuator2 to status of sensor2.

	
class automate.callables.builtin_callables.SetAttr(obj, **kwargs)

	Set object’s attributes

Usage:

SetAttr(obj, attr=value, attr2=value2)
performs setattr(obj, attr, value) and setattr(obj, attr2, value2).

	
class automate.callables.builtin_callables.Changed(*args, **kwargs)

	Is value changed since evaluated last time? If this is the first time this Callable
is called (i.e. comparison to last value cannot be made), return True.

Usage:

Changed(sensor1)

	
class automate.callables.builtin_callables.Swap(*args, **kwargs)

	Swap sensor or BinaryActuator status (False to True and True to False)

Usage:

Swap(actuator1)

	
class automate.callables.builtin_callables.AbstractRunner(*args, **kwargs)

	Abstract baseclass for Callables that are used primarily to run other Actions

	
class automate.callables.builtin_callables.Run(*args, **kwargs)

	Run specified Callables one at time. Return always True.

Usage:

Run(callable1, callable2, ...)

	
class automate.callables.builtin_callables.Delay(*args, **kwargs)

	Execute commands delayed by time (in seconds) in separate thread

Usage:

Delay(delay_in_seconds, action)

	
class automate.callables.builtin_callables.Threaded(*args, **kwargs)

	Execute commands in a single thread (in order)

Usage:

Threaded(action)

	
class automate.callables.builtin_callables.If(*args, **kwargs)

	Basic If statement

Usage:

If(x, y, z) # if x, then run y, z, where x, y, and z are Callables or StatusObjects
If(x, y)

	
class automate.callables.builtin_callables.IfElse(*args, **kwargs)

	Basic if - then - else statement

Usage:

IfElse(x, y, z) # if x, then run y, else run z, where x, y,
 # and z are Callables or StatusObjects
IfElse(x, y)

	
class automate.callables.builtin_callables.Switch(*args, **kwargs)

	Basic switch - case statement.

Two alternative usages:

	First argument switch criterion (integer-valued) and others are cases OR

	First argument is switch criterion and second argument is dictionary that contains all possible
cases as keys and related actions as their values.

Usage:

Switch(criterion, choice1, choice2...) # where criteria is integer-valued
 # (Callable or StatusObject etc.)
 # and choice1, 2... are Callables.

Switch(criterion, {'value1': callable1, 'value2': 'callable2'})

	
class automate.callables.builtin_callables.TryExcept(*args, **kwargs)

	Try returning x, but if exception occurs in the value evaluation, then return y.

Usage:

Try(x, y) # where x and y are Callables or StatusObjects etc.

	
class automate.callables.builtin_callables.Min(*args, **kwargs)

	Give minimum number of given objects.

Usage:

Min(x, y, z...)
where x,y,z are anything that can be
evaluated as number (Callables, Statusobjects etc).

	
class automate.callables.builtin_callables.Max(*args, **kwargs)

	Give maximum number of given objects

Usage:

Max(x, y, z...)
where x,y,z are anything that can be
evaluated as number (Callables, Statusobjects etc).

	
class automate.callables.builtin_callables.Sum(*args, **kwargs)

	Give sum of given objects

Usage:

Sum(x, y, z...)
where x,y,z are anything that can be
evaluated as number (Callables, Statusobjects etc).

	
class automate.callables.builtin_callables.Product(*args, **kwargs)

	Give product of given objects

Usage:

Product(x, y, z...)
where x,y,z are anything that can be
evaluated as number (Callables, Statusobjects etc).

	
class automate.callables.builtin_callables.Mult(*args, **kwargs)

	Synonym of Product

	
class automate.callables.builtin_callables.Add(*args, **kwargs)

	Synonym of Sum

	
class automate.callables.builtin_callables.AbstractLogical(*args, **kwargs)

	Abstract class for logic operations (And, Or etc.)

	
class automate.callables.builtin_callables.Anything(*args, **kwargs)

	Condition which gives True always

Usage:

Anything(x,y,z...)

	
class automate.callables.builtin_callables.Or(*args, **kwargs)

	Or condition

Usage:

Or(x,y,z...) # gives truth value of x or y or z or ,,,

	
class automate.callables.builtin_callables.And(*args, **kwargs)

	And condition

Usage:

And(x,y,z...) # gives truth value of x and y and z and ...

	
class automate.callables.builtin_callables.Neg(*args, **kwargs)

	Give negative of specified callable (minus sign)

Usage:

Neg(x) # returns -x

	
class automate.callables.builtin_callables.Not(*args, **kwargs)

	Give negation of specified object

Usage:

Not(x) # returns not x

	
class automate.callables.builtin_callables.Equal(*args, **kwargs)

	Equality condition, i.e. is x == y

Usage:

Equal(x, y) # returns truth value of x == y

	
class automate.callables.builtin_callables.Less(*args, **kwargs)

	Condition: is x < y

Usage:

Less(x,y) # returns truth value of x < y

	
class automate.callables.builtin_callables.More(*args, **kwargs)

	Condition: is x > y

Usage:

More(x,y) # returns truth value of x > y

	
class automate.callables.builtin_callables.Value(*args, **kwargs)

	Give specified value

Usage:

Value(x) # returns value of x. Used to convert StatusObject into Callable,
 # for example, if StatusObject status needs to be used directly
 # as a condition of Program condition attributes.

	
class automate.callables.builtin_callables.AbstractQuery(*args, **kwargs)

	Baseclass for query type of Callables, i.e. those that return
set of objects from system based on given conditions.

	
class automate.callables.builtin_callables.OfType(*args, **kwargs)

	Gives all objects of given type that are found in System

Usage & example:

OfType(type, **kwargs)
OfType(AbstractActuator, exclude=['actuator1', 'actuator2'])
returns all actuators in system, except those named 'actuator1' and 'actuator2'.

	Parameters:	exclude (list) – list of instances to be excluded from the returned list.

	
class automate.callables.builtin_callables.RegexSearch(*args, **kwargs)

	Scan through string looking for a match to the pattern.
Return matched parts of string by re.search() [https://docs.python.org/2/library/re.html#re.search].

	Parameters:	group (int [https://docs.python.org/2/library/functions.html#int]) – Match group can be chosen by group number.

Usage & examples:

RegexSearch(match_string, content_to_search, **kwargs)

RegexSearch(r'(\d*)(\w*)', '12test') # returns '12'
RegexSearch(r'(\d*)(\w*)', '12test', group=2) # returns 'test'
RegexSearch(r'testasfd', 'test') # returns ''

Tip

More examples in unit tests

	
class automate.callables.builtin_callables.RegexMatch(*args, **kwargs)

	Try to apply the pattern at the start of the string.
Return matched parts of string by re.match() [https://docs.python.org/2/library/re.html#re.match].

	Parameters:	group (int [https://docs.python.org/2/library/functions.html#int]) – Match group can be chosen by group number.

Usage & examples from unit tests:

RegexMatch(match_string, content_to_search, **kwargs)

RegexMatch(r'heptest', 'heptest') # returns 'heptest'
RegexMatch(r'heptest1', 'heptest') # returns ''
RegexMatch(r'(hep)te(st1)', 'heptest1', group=1) # returns 'hep'
RegexMatch(r'(hep)te(st1)', 'heptest1', group=2) # returns 'st1'

Tip

More examples in unit tests

	
class automate.callables.builtin_callables.RemoteFunc(*args, **kwargs)

	Evaluate remote function via XMLRPC.

Usage:

RemoteFunc('host', 'funcname', *args, **kwargs)

	
class automate.callables.builtin_callables.WaitUntil(*args, **kwargs)

	Wait until sensor/actuator/callable status changes to True and then execute commands.
WaitUntil will return immediately and only execute specified actions
after criteria is fullfilled.

Usage:

WaitUntil(sensor_or_callable, Action1, Action2, etc)

Note

No triggers are collected from WaitUntil

	
class automate.callables.builtin_callables.While(*args, **kwargs)

	Executes commands (in thread) as long as criteria (sensor, actuator, callable status) remains true.
Flushes worker queue between each iteration such that criteria is updated, if executed
actions alter it.

	Parameters:	do_after (Callable) – given Callable is executed after while loop is finished.

Usage & example:

While(criteria, action1, action2, do_after=action3)

Example loop that runs actions 10 times. Assumes s=UserIntSensor()
Run(
 SetStatus(s, 0),
 While(s < 10,
 SetStatus(s, s+1),
 other_actions
)
)

Note

While execution is performed in separate thread

Note

No triggers are collected from While

	
class automate.callables.builtin_callables.TriggeredBy(*args, **kwargs)

	Return whether action was triggered by one of specified triggers or not

If no arguments, return the trigger.

Usage:

TriggeredBy() # -> returns the trigger
TriggeredBy(trig1, trig2...) #-> Returns if trigger is one of arguments

Automate System

Introduction

automate.system.System encapsulates the state machine parts into single object. It has already been
explained how to use System. Here we will go further into some details.

Groups

In Automate system, it is possible to group objects by putting them to Groups. Grouping helps organizing
objects in code level as well as in GUIs (Web User Interface for Automate etc.).

Here is an example:

class MySystem(System):
 class group1(Group):
 sensor1 = UserBoolSensor()
 sensor2 = UserBoolSensor()

 class group2(Group):
 sensor3 = UserBoolSensor()
 sensor4 = UserBoolSensor()

By adding SystemObject to a group, will assign it a tag corresponding to its groups class name. I.e. here,
sensor1 and sensor2 will get tag group:group1 and sensor3 and sensor4 will get tag group:group2.

System has single namespace dictionary that contains names of all objects. That implies
that objects in different groups may not have same name.

System State Saving and Restoring via Serialization

If System state is desired to be loaded later from periodically auto-saved state dumps,
system can be instantiated via load_or_create() as follows:

my_system_instance = MySystem.load_or_create('my_statedump.dmp')

Then system state will be saved periodically (by default, once per 30 minutes) by
StatusSaverService, which is automatically loaded
service (see Services). If you desire to change
interval, you need to explicitly define
dump_interval
as follows:

status_saver = StatusSaverService(dump_interval=10) # interval in seconds
my_system_instance = MySystem.load_or_create('my_statedump.dmp', services=[status_saver])

SystemObject

[image: Inheritance diagram of automate.system.SystemObject]

SystemObject is baseclass for all objects that may be used within
System (most importantly,
Sensors, Actuators and Programs).

Due to multiple inheritance, many SystemObjects,
such as Sensors (AbstractSensor),
Actuators (AbstractActuator), and
Programs (Program) can act in multiple roles,
in addition to their primary role, as follows:

	Sensors and actuators can always be used also as a program i.e. they may have conditions
and action callables defined, because they derive from ProgrammableSystemObject.

	Both Actuators and Sensors can be used as triggers in Callables and via them in Programs

	Also plain Programs can be used as a Sensor. Then its activation status (boolean) serves as Sensor status.

Sensors and Programs do not have Actuator properties (i.e. per-program statuses), but
Sensor status can still be set/written by a Program, similarly to actuators with
slave attribute set to True.

System Class Definition

	
class automate.system.System(loadstate=None, **traits)

	
	
allow_name_referencing = None

	Allow referencing objects by their names in Callables. If disabled, you can still refer to objects by names
by Object(‘name’)

	
filename = None

	Filename to where to dump the system state

	
logfile = None

	Name of the file where logs are stored

	
print_level = None

	Log level for the handler that writes to stdout

	
logger = None

	Reference to logger instance (read-only)

	
log_handler = None

	Instance to the log handler that writes to stdout

	
log_format = None

	Format string of the log handler that writes to stdout

	
print_handler = None

	Instance to the log handler that writes to logfile (read-only)

	
logfile_format = None

	Format string of the log handler that writes to logfile

	
log_level = None

	Log level of the handler that writes to logfile

	
default_services = None

	Add here services that you want to be added automatically. This is meant to be re-defined in subclass.

	
services = None

	List of services that are loaded in the initialization of the System.

	
exclude_services = None

	List of servicenames that are desired to be avoided (even if normally autoloaded).

	
namespace = None

	System namespace (read-only)

	
objects_sorted = None

	Property giving objects sorted alphabetically (read-only)

	
sensors = None

	Read-only property giving all sensors of the system

	
actuators = None

	Read-only property giving all actuator of the system

	
programs = None

	Read-only property giving all objects that have program features in use

	
ordinary_programs = None

	Read-only property giving all Program objects

	
worker_autostart = None

	Start worker thread automatically after system is initialized

	
pre_exit_trigger = None

	Trigger which is triggered before quiting (used by Services)

	
all_tags = None

	Read-only property that gives list of all object tags

	
two_phase_queue = None

	Enable experimental two-phase queue handling technique (not recommended)

	
classmethod load_or_create(filename=None, **kwargs)

	Load system from a dump, if dump file exists, or create a new system if it does not exist.

	
save_state()

	Save state of the system to a dump file System.filename

	
cmd_namespace

	A read-only property that gives the namespace of the system for evaluating commands.

	
get_unique_name(obj, name='', name_from_system='')

	Give unique name for an Sensor/Program/Actuator object

	
services_by_name

	A property that gives a dictionary that contains services as values and their names as keys.

	
service_names

	A property that gives the names of services as a list

	
flush()

	Flush the worker queue. Usefull in unit tests.

	
name_to_system_object(name)

	Give SystemObject instance corresponding to the name

	
eval_in_system_namespace(exec_str)

	Get Callable for specified string (for GUI-based editing)

	
register_service_functions(*funcs)

	Register function in the system namespace. Called by Services.

	
register_service(service)

	Register service into the system. Called by Services.

	
request_service(type, id=0)

	Used by Sensors/Actuators/other services that need to use other services for their
operations.

	
cleanup()

	Clean up before quitting

	
cmd_exec(cmd)

	Execute commands in automate namespace

	
name = None

	Name of the system (shown in WEB UI for example)

	
worker_thread = None

	Reference to the worker thread (read-only)

	
post_init_trigger = None

	Trigger which is triggered after initialization is ready (used by Services)

SystemObjects Class Definition

	
class automate.systemobject.SystemObject(name='', **traits)

	Baseclass for Programs, Sensor, Actuators

	
callables = []

	Names of attributes that accept Callables. If there are custom callables being used, they must be added here.
The purpose of this list is that these Callables will be initialized properly.
ProgrammableSystemObject introduces 5 basic callables
(see also Programs).

	
get_default_callables()

	Get a dictionary of default callables, in form {name:callable}. Re-defined in subclasses.

	
system = None

	Reference to System object

	
description = None

	Description of the object (shown in WEB interface)

	
tags = None

	Tags are used for (for example) grouping objects. See Groups.

	
name = None

	Name property is determined by System namespace. Can be read/written.

	
hide_in_uml = None

	If set to True, current SystemObject is hidden in the UML diagram of WEB interface.

	
view = ['hide_in_uml']

	Attributes that can be edited by user in WEB interface

	
data_type = ''

	The data type name (as string) of the object. This is written in the initialization, and is used by WEB
interface Django templates.

	
editable = False

	If editable=True, a quick edit widget will appear in the web interface. Define in subclasses.

	
object_type

	A read-only property that gives the object type as string; sensor, actuator, program, other.
Used by WEB interface templates.

	
logger = None

	Python Logger instance for this object. System creates each object its own logger instance.

	
get_status_display(**kwargs)

	Redefine this in subclasses if status can be represented in human-readable way (units etc.)

	
get_as_datadict()

	Get information about this object as a dictionary. Used by WebSocket interface to pass some
relevant information to client applications.

	
setup(*args, **kwargs)

	Initialize necessary services etc. here. Define this in subclasses.

	
setup_system(system, name_from_system='', **kwargs)

	Set system attribute and do some initialization. Used by System.

	
setup_callables()

	Setup Callable attributes that belong to this object.

	
cleanup()

	Write here whatever cleanup actions are needed when object is no longer used.

Services

Introduction

There are two kinds of Services in Automate: UserServices and SystemServices.

SystemServices are mainly designed to implement a practical way of writing an interface between your
custom SystemObjects and their corresponding resources (devices for example). For example,
RpioService
provide access to Raspberry Pi GPIO pins for
RpioActuator and
RpioSensor objects,
and ArduinoService, correspondingly, provides access to Arduino devices for ArduinoActuator and ArduinoSensors.
(Arduino and RPIO support are provided by extensions, see Extensions).

UserServices, on the other hand, provide user interfaces to the system. For example,
WebService
provides access to the system via web browser,
TextUIService
via IPython shell and
RpcService
via XmlRPC (remote procedure call) interface for other applications.

If not automatically loaded (services with autoload set to True),
they need to be instantiated (contrary to SystemObject)
outside the System, and given in the initialization of the system (services).
For example of initialization and configuring of
WebService, see “Hello World” in Automate.

Services Class Definitions

	
class automate.service.AbstractService

	Base class for System and UserServices

	
autoload = False

	If set to True, service is loaded automatically (if not explicitly prevented
in automate.system.System.exclude_services). Overwrite this in subclasses,

	
setup()

	Initialize service here. Define in subclasses.

	
cleanup()

	Cleanup actions must be performed here. This must be blocking until service is
fully cleaned up.

Define in subclasses.

	
class automate.service.AbstractUserService

	Baseclass for UserServices. These are set up on startup. They provide usually user interaction services.

	
class automate.service.AbstractSystemService

	Baseclass for SystemServices. These are set up by when first requested by Sensor or other object.

Builtin Services

	
class automate.services.logstore.LogStoreService

	Provides interface to log output. Used by WebService.

	
log_level = None

	Log level

	
log_length = None

	Log length

	
most_recent_line = None

	The most recent log line is always updated here.
t Subscription to this attribute can be used to follow new log entries.

	
class automate.services.statussaver.StatusSaverService

	Service which is responsible for scheduling dumping system into file periodically.

	
dump_interval = None

	Dump saving interval, in seconds. Default 30 minutes.

	
class automate.services.plantumlserv.PlantUMLService

	Provides UML diagrams of the system as SVG images. Used by WebService.

PLantUMLService requires either PlantUML software (which is opensource software written in Java) to be
installed locally (see http://plantuml.sourceforge.net/) or it is possible to use online service of plantuml.com
In addition you need python package plantuml (available via PYPI).

	
url = None

	URL of PlantUML Java Service. To use PlantUML online service, set this to ‘http://www.plantuml.com/plantuml/svg/‘

	
arrow_colors = None

	Arrow colors as HTML codes stored as a dictionary with keys:
controlled_target, active_target, inactive_target, trigger

	
background_colors = None

	Background colors as HTML codes, stored as a dictionary with keys: program, actuator, sensor

	
write_puml(filename='')

	Writes PUML from the system. If filename is given, stores result in the file.
Otherwise returns result as a string.

	
write_svg()

	Returns PUML from the system as a SVG image. Requires plantuml library.

	
class automate.services.textui.TextUIService

	Provides interactive Python shell frontend to the System.
Uses IPython if it is installed.
Provides couple of functions to the System namespace.

	
ls(what)

	List actuators, programs or sensors (what is string)

	
lsa()

	List actuators

	
lsp()

	List programs

	
lss()

	List sensors

	
help(*args, **kwargs)

	Print Automate help if no parameter is given. Otherwise,
act as pydoc.help()

	
text_ui()

	Start Text UI main loop

Extensions

Automate functionality can be easily extended by various extension modules, and it is also
possible to make your own Automate extensions, for details see Making your own Automate Extensions.
The following extensions are included in Automate:

	Web User Interface for Automate
	Introduction

	Installation

	Example application using Web UI

	WebService class definition

	WSGI Support for Automate
	Class definition

	Remote Procedure Call Support for Automate
	Introduction

	Installation

	Class definitions

	Arduino Support for Automate
	Introduction

	Installation

	Example application

	Class definitions

	Raspberry Pi GPIO Support for Automate
	Introduction

	Installation

	Example application

	Class definitions

Web User Interface for Automate

Introduction

Automate Web UI extension provides easy to use approach to monitoring and modifying
Automate system and its components. Features:

	Displayed data updated in real time via Websocket

	Responsive design (using Bootstrap [http://getbootstrap.com/] CSS & JS library), suitable for
mobile and desktop use.

	Optional authentication

	Read-only and read-write modes.
	Read-only mode allows only monitoring (default)

	Read-write mode allows modifying the System by:
	adding new Actuators / Sensors / Programs

	modifying existing Actuators / Sensors / Programs

	Quick editing of user-editable sensors from main views

	HTTP and secured HTTPS servers supported (powered by built in Tornado Web Server)

Main features are illustrated with a few screenshots:

Installation

Install extras:

pip install automate[web]

Main view

In main view you can observe actuator and sensor statuses in real time, and also easily access
user-editable sensor statuses. Clicking object name will give more details of the selected item
as well as ‘edit’ button. (only in read-write mode).

[image: ../_images/main_view.png]

Edit view

In edit view you can edit almost all the attributes of the objects that are in the system.
You can also create new ones.

[image: ../_images/edit_view.png]

UML view

In UML view you can see nice UML diagram of the whole system. To enable UML diagram, you need to set
up PlantUMLService.

[image: ../_images/uml_view.png]

Console view

In console view you can see the log as well as type commands same way as in IPython shell.

[image: ../_images/shell_view.png]

Example application using Web UI

This is extended example of the “Hello World” in Automate, that opens two web services, one for port 8085 and another
in 8086. It will go to UML view by default and in “User defined” -view you will see only web_switch.

from automate import *

class MySystem(System):
 # HW swtich connected Raspberry Pi GPIO port 1
 hardware_switch = RpioSensor(port=1)
 # Switch that is controllable, for example, from WEB interface
 web_switch = UserBoolSensor(tags=['user'])
 # Lamp relay that switches lamp on/off, connected to GPIO port 2
 lamp = RpioActuator(port=2)
 # Program that controls the system behaviour
 program = Program(
 active_condition = Or('web_switch', 'hardware_switch'),
 on_activate = SetStatus('lamp', True)
)

To view UML diagram, we need to set up PlantUMLService. Here we will use
plantuml.com online service to render the UML graphics.
plantuml_service = PlantUMLService(url='http://www.plantuml.com/plantuml/svg/')
web_service = WebService(
 read_only=False,
 default_view='plantuml',
 http_port=8085,
 http_auth = ('myusername', 'mypassword'),
 user_tags = ['user'],
)

Just to give example of slave feature, let's open another server instance
at port 8086.
slave = WebService(
 http_port=8086,
 slave=True,
)

my_system = MySystem(services=[plantuml_service, web_service, slave])

Tip

Try to run the code in your IPython shell by copying & pasting it with cpaste command!

WebService class definition

	
class automate.extensions.webui.WebService

	Web User Interface Service for Automate

	
read_only = None

	Restrict usage to only monitoring statuses (default: True).
If WebService is not in read_only mode, it is possible to run arbitrary Python commands
through eval/exec via web browser. This is, of course, a severe security issue.
Secure SSL configuration HIGHLY recommended, if not operating in read_only mode.

	
default_view = None

	Default view that is displayed when entering the server. Can be the name of any view in views.py

	
show_actuator_details = None

	Below Actuator row, show active Programs that are controlling Actuator

	
http_port = None

	HTTP port to listen

	
http_auth = None

	Authentication for logging into web server. (user,password) pairs in a tuple.

	
websocket_timeout = None

	Let websocket connection die after websocket_timeout time of no ping reply from client.

	
user_tags = None

	Tags that are shown in user defined view

	
debug = None

	Django debugging mode (slower, more info shown when error occurs)

	
custom_pages = None

	User-defined custom pages as a dictionary of form {name: template_content}

	
slave = None

	set to True, if you want to launch multiple servers with same system. Authentication and
other settings are then taken from master service. Only web server settings (http host/port)
are used from slave.

	
django_settings = None

	In this dictionary you can define your custom Django settings which will override the default ones

WSGI Support for Automate

This extension provides Web server for WSGI-aware extensions, such as Remote Procedure Call Support for Automate,
Web User Interface for Automate. It is of no use alone.

Class definition

	
class automate.extensions.wsgi.TornadoService

	Abstract service that provides HTTP server for WSGI applications.

	
http_ipaddr = None

	Which ip address to listen. Use 0.0.0.0 (default) to listen to all local networking interfaces.

	
http_port = None

	HTTP (or HTTPS if using SSL) port to listen

	
ssl_certificate = None

	Path to ssl certificate file. If set, SSL will be used.

Tip

You may use script scripts/generate_selfsigned_certificate.sh to generate a
self-signed openssl certificate.

	
ssl_private_key = None

	Path to ssl private key file

	
num_threads = None

	Number of listener threads to spawn

	
static_dirs = None

	Extra static dirs you want to serve. Example:

static_dirs = {'/my_static/(.*)': '/path/to/my_static'}

	
get_wsgi_application()

	Get WSGI function. Implement this in subclasses.

Remote Procedure Call Support for Automate

Introduction

This extension provides XmlRPC API for external applications. Exported API is by default defined by
automate.extensions.rpc.rpc.ExternalApi.

Installation

Install extras:

pip install automate[rpc]

Class definitions

	
class automate.extensions.rpc.RpcService

	
	
view_tags = None

	Tags that are displayed via get_websensors RPC function

	
api = None

	If you want to define custom api (similar to, or derived from ExternalApi, it can be given here.

	
class automate.extensions.rpc.rpc.ExternalApi(system, tag)

	
	
set_status(name, status)

	Set sensor name status to status.

	
get_status(name)

	Get status of object with name name.

	
set_object_status(statusdict)

	Set statuses from a dictionary of format {name: status}

	
toggle_object_status(objname)

	Toggle boolean-valued sensor status between True and False.

	
get_sensors()

	Get sensors as a dictionary of format {name: status}

	
get_websensors()

	Get sensors with defined tag as a dictionary of format {name: status}

	
get_actuators()

	Get actuators as a dictionary of format {name: status}

	
flush()

	Flush the system queue. If you have just set a status and then read a value,
it might be necessary to flush queue first, such that related changes have been
applied.

	
is_alive()

	Simple RPC command that returns always True.

	
log()

	Return recent log entries as a string.

Arduino Support for Automate

Introduction

This extension provides interface to Arduino devices via pyFirmata library [https://github.com/tino/pyFirmata].

Installation

Install extras:

pip install automate[arduino]

Example application

This example application sets up couple of analog and digital Arduino Sensors and Actuators.
It also introduces Servo actuator with ConstantTimeActuator,
which functions such a way that if value of a1 changes, the value of servo will change smoothly
within given time interval.

from automate import *

class MySystem(System):
 a1 = ArduinoAnalogSensor(dev=0, pin=0)
 d12 = ArduinoDigitalSensor(dev=0, pin=12)

 d13 = ArduinoDigitalActuator(dev=0, pin=13) # LED on Arduino board
 servo = ArduinoServoActuator(min_pulse=200,
 max_pulse=8000,
 dev=0,
 pin=3,
 default=50,
 slave=True)

 interp = ConstantTimeActuator(change_time=2.,
 change_frequency=20.,
 slave_actuator=servo)

 prog = Program(
 on_update=Run(Log("Value: %s", Value(a1)),
 SetStatus(d13, d12),
 SetStatus(interp, Value(180) * Value(a1)))
)

my_arduino = ArduinoService(
 arduino_devs=["/dev/ttyUSB0"],
 arduino_dev_types=["Arduino"],
 arduino_dev_sampling=[500])

s = MySystem(services=[my_arduino, WebService()])

Class definitions

Service

	
class automate.extensions.arduino.ArduinoService

	Service that provides interface to Arduino devices via
pyFirmata library [https://github.com/tino/pyFirmata].

	
arduino_devs = None

	Arduino devices to use, as a list

	
arduino_dev_types = None

	Arduino device board types, as a list of strings. Choices are defined by pyFirmata board
class names, i.e. allowed values are “Arduino”, “ArduinoMega”, “ArduinoDue”.

	
arduino_dev_sampling = None

	Arduino device sampling rates, as a list (in milliseconds).

	
change_digital(dev, pin_nr, value)

	Change digital Pin value (boolean). Also PWM supported(float)

Sensors

	
class automate.extensions.arduino.AbstractArduinoSensor(*args, **kwargs)

	Abstract base class for Arduino sensors

	
dev = None

	Arduino device number (specify, if more than 1 devices configured in ArduinoService)

	
pin = None

	Arduino pin number

	
class automate.extensions.arduino.ArduinoDigitalSensor(*args, **kwargs)

	Boolean-valued sensor object for digital Arduino input pins

	
class automate.extensions.arduino.ArduinoAnalogSensor(*args, **kwargs)

	Float-valued sensor object for analog Arduino input pins

Actuators

	
class automate.extensions.arduino.AbstractArduinoActuator(*args, **kwargs)

	Abstract base class for Arduino actuators

	
dev = None

	Arduino device number (specify, if more than 1 devices configured in ArduinoService)

	
pin = None

	Arduino pin number

	
class automate.extensions.arduino.ArduinoDigitalActuator(*args, **kwargs)

	Boolean-valued actuator object for digital Arduino output pins

	
class automate.extensions.arduino.ArduinoPWMActuator(*args, **kwargs)

	Float-valued actuator object for Arduino output pins that can be configured in PWM mode
Status is float between 0.0 and 1.0.

	
class automate.extensions.arduino.ArduinoServoActuator(*args, **kwargs)

	Float-valued actuator object for Arduino output pins that can be configured in Servo mode
Status is servo angle (0-360).

	
min_pulse = None

	Minimum pulse time (in microseconds)

	
max_pulse = None

	Maximum pulse time (in microseconds)

Raspberry Pi GPIO Support for Automate

Introduction

This extension provides interface to Raspberry Pi GPIO via RPIO library. RPIO library [http://pythonhosted.org/RPIO/].

Installation

Install extras:

pip install automate[raspberrypi]

Example application

This simple example application sets up simple relation between input pin button in port 22 and
output pin light in port 23. If for a button is attached in button, pushing it down
will light the led, that is attached to light.

from automate import *

class MySystem(System):
 button = RpioSensor(port=22, button_type='down')
 light = RpioActuator(port=23, change_delay=2)
 myprog = Program(active_condition=Value('mysensor'),
 on_activate=SetStatus('myactuator', True))

mysystem = MySystem(services=[WebService()])

Class definitions

Service

	
class automate.extensions.rpio.RpioService

	Service that provides interface to Raspberry Pi GPIO via
RPIO library [http://pythonhosted.org/RPIO/].

	
gpio_cleanup = None

	Perform GPIO cleanup when exiting (default: False).

	
rpio = None

	Use RPIO instead of RPI.GPIO

Sensors

	
class automate.extensions.rpio.RpioSensor(*args, **kwargs)

	Boolean-valued sensor object that reads Raspberry Pi GPIO input pins.

	
port = None

	GPIO port

	
inverted = None

	Set to True to have inversed status value

	
button_type = None

	Button setup: “down”: pushdown resistor, “up”: pushup resistor, or “none”: no resistor set up.

	
class automate.extensions.rpio.RpioSensor(*args, **kwargs)

	Boolean-valued sensor object that reads Raspberry Pi GPIO input pins.

	
port = None

	GPIO port

	
inverted = None

	Set to True to have inversed status value

	
button_type = None

	Button setup: “down”: pushdown resistor, “up”: pushup resistor, or “none”: no resistor set up.

Actuators

	
class automate.extensions.rpio.RpioActuator(*args, **kwargs)

	Boolean-valued actuator for setting Raspberry Pi GPIO port statuses (on/off).

	
port = None

	GPIO port id

	
inverted = None

	Set to True to have inversed status value

	
class automate.extensions.rpio.TemperatureSensor(*args, **kwargs)

	W1 interface (on Raspberry Pi board) that polls polling temperature.
(kernel modules w1-gpio and w1-therm required).
Not using RPIO, but placed this here, since this is also Raspberry Pi related sensor.

	
addr = None

	Address of W1 temperature sensor (something like "28-00000558263c"), see what you have in
/sys/bus/w1/devices/

	
max_jump = None

	Maximum jump in temperature, between measurements. These temperature sensors
tend to give sometimes erroneous results.

	
max_errors = None

	Maximum number of erroneous measurements, until value is really set

	
class automate.extensions.rpio.RpioPWMActuator(*args, **kwargs)

	Actuator to control PWM (pulse-width-modulation) ports on Raspberry pi GPIO.

Status range 0...1

This is not recommended to be used because RPIO PWM implementation is not very well behaving.
I recommend to use ArduinoPWMActuator with an Arduino loaded with StandardFirmata. It’s much more
stable and robust solution.

	
port = None

	GPIO port number

	
dma_channel = None

	RPIO PWM DMA channel

	
frequency = None

	PWM frequency (Hz)

Making your own Automate Extensions

Extension Development

Automate extensions allow extending Automate functionalities by writing external libraries
that may consist of new Service, Sensor, Actuator, or Callable classes.

To start developing automate extensions, it is recommended to use
cookiecutter [http://cookiecutter.readthedocs.org/] template. This is how it works:

	Install cookiecutter 1.0.0 or newer:

pip install cookiecutter

	Generate a Automate extension project:

cookiecutter https://github.com/tuomas2/cookiecutter-automate-ext-template.git

Cookiecutter asks few questions and you have great basis for starting your template
development. There will be created Python files where you may add your new custom
Automate classes.

For your classes to be exported to the Automate, make sure that they are listed in
extension_classes list in __init__.py of the extension module.

All installed Automate Extensions are available from Automate applications and are imported
to automate namespace.

Tip

You can install your extension in editable mode by running pip install -e .
in your extension root directory.

Tip

You can look at Extensions for examples.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 automate	

 	
 	
 automate.actuators.builtin_actuators	

 	
 	
 automate.callables.builtin_callables	

 	
 	
 automate.sensors.builtin_sensors	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_give_targets() (automate.callable.AbstractCallable method)

 	
 	_give_triggers() (automate.callable.AbstractCallable method)

A

 	
 	AbstractAction (class in automate.callables.builtin_callables)

 	AbstractActuator (class in automate.statusobject)

 	AbstractArduinoActuator (class in automate.extensions.arduino)

 	AbstractArduinoSensor (class in automate.extensions.arduino)

 	AbstractCallable (class in automate.callable)

 	AbstractInterpolatingActuator (class in automate.actuators.builtin_actuators)

 	AbstractLogical (class in automate.callables.builtin_callables)

 	AbstractNumericSensor (class in automate.sensors.builtin_sensors)

 	AbstractPollingSensor (class in automate.sensors.builtin_sensors)

 	AbstractQuery (class in automate.callables.builtin_callables)

 	AbstractRunner (class in automate.callables.builtin_callables)

 	AbstractSensor (class in automate.statusobject)

 	AbstractService (class in automate.service)

 	AbstractSystemService (class in automate.service)

 	AbstractUserService (class in automate.service)

 	activate_program() (automate.statusobject.AbstractActuator method)

 	(automate.statusobject.StatusObject method)

 	active (automate.program.ProgrammableSystemObject attribute)

 	active_condition (automate.program.ProgrammableSystemObject attribute)

 	actual_targets (automate.program.ProgrammableSystemObject attribute)

 	actual_triggers (automate.program.ProgrammableSystemObject attribute)

 	actuators (automate.system.System attribute)

 	
 	Add (class in automate.callables.builtin_callables)

 	addr (automate.extensions.rpio.TemperatureSensor attribute)

 	all_tags (automate.system.System attribute)

 	allow_name_referencing (automate.system.System attribute)

 	And (class in automate.callables.builtin_callables)

 	Anything (class in automate.callables.builtin_callables)

 	api (automate.extensions.rpc.RpcService attribute)

 	arduino_dev_sampling (automate.extensions.arduino.ArduinoService attribute)

 	arduino_dev_types (automate.extensions.arduino.ArduinoService attribute)

 	arduino_devs (automate.extensions.arduino.ArduinoService attribute)

 	ArduinoAnalogSensor (class in automate.extensions.arduino)

 	ArduinoDigitalActuator (class in automate.extensions.arduino)

 	ArduinoDigitalSensor (class in automate.extensions.arduino)

 	ArduinoPWMActuator (class in automate.extensions.arduino)

 	ArduinoService (class in automate.extensions.arduino)

 	ArduinoServoActuator (class in automate.extensions.arduino)

 	arrow_colors (automate.services.plantumlserv.PlantUMLService attribute)

 	Attrib (class in automate.callables.builtin_callables)

 	autoload (automate.service.AbstractService attribute)

 	automate.actuators.builtin_actuators (module)

 	automate.callables.builtin_callables (module)

 	automate.sensors.builtin_sensors (module)

B

 	
 	background_colors (automate.services.plantumlserv.PlantUMLService attribute)

 	
 	BoolActuator (class in automate.actuators.builtin_actuators)

 	button_type (automate.extensions.rpio.RpioSensor attribute), [1]

C

 	
 	call() (automate.callable.AbstractCallable method)

 	call_eval() (automate.callable.AbstractCallable method)

 	callables (automate.systemobject.SystemObject attribute)

 	caller (automate.sensors.builtin_sensors.ShellSensor attribute)

 	cancel() (automate.callable.AbstractCallable method)

 	change_delay (automate.statusobject.StatusObject attribute)

 	change_digital() (automate.extensions.arduino.ArduinoService method)

 	change_frequency (automate.actuators.builtin_actuators.AbstractInterpolatingActuator attribute)

 	change_mode (automate.statusobject.StatusObject attribute)

 	change_time (automate.actuators.builtin_actuators.ConstantTimeActuator attribute)

 	Changed (class in automate.callables.builtin_callables)

 	changing (automate.statusobject.StatusObject attribute)

 	
 	children (automate.callable.AbstractCallable attribute)

 	cleanup() (automate.service.AbstractService method)

 	(automate.system.System method)

 	(automate.systemobject.SystemObject method)

 	cmd (automate.sensors.builtin_sensors.ShellSensor attribute)

 	cmd_exec() (automate.system.System method)

 	cmd_namespace (automate.system.System attribute)

 	collect() (automate.callable.AbstractCallable method)

 	ConstantSpeedActuator (class in automate.actuators.builtin_actuators)

 	ConstantTimeActuator (class in automate.actuators.builtin_actuators)

 	CronTimerSensor (class in automate.sensors.builtin_sensors)

 	custom_pages (automate.extensions.webui.WebService attribute)

D

 	
 	data_type (automate.systemobject.SystemObject attribute)

 	deactivate_program() (automate.statusobject.AbstractActuator method)

 	(automate.statusobject.StatusObject method)

 	debug (automate.extensions.webui.WebService attribute)

 	(automate.statusobject.StatusObject attribute)

 	Debug (class in automate.callables.builtin_callables)

 	default (automate.statusobject.AbstractActuator attribute)

 	(automate.statusobject.AbstractSensor attribute)

 	default_program (automate.statusobject.AbstractActuator attribute)

 	
 	default_services (automate.system.System attribute)

 	default_view (automate.extensions.webui.WebService attribute)

 	del_state() (automate.callable.AbstractCallable method)

 	Delay (class in automate.callables.builtin_callables)

 	description (automate.systemobject.SystemObject attribute)

 	dev (automate.extensions.arduino.AbstractArduinoActuator attribute)

 	(automate.extensions.arduino.AbstractArduinoSensor attribute)

 	django_settings (automate.extensions.webui.WebService attribute)

 	dma_channel (automate.extensions.rpio.RpioPWMActuator attribute)

 	dump_interval (automate.services.statussaver.StatusSaverService attribute)

E

 	
 	editable (automate.systemobject.SystemObject attribute)

 	Empty (class in automate.callables.builtin_callables)

 	Equal (class in automate.callables.builtin_callables)

 	Eval (class in automate.callables.builtin_callables)

 	
 	eval_in_system_namespace() (automate.system.System method)

 	exclude_services (automate.system.System attribute)

 	exclude_triggers (automate.program.ProgrammableSystemObject attribute)

 	Exec (class in automate.callables.builtin_callables)

 	ExternalApi (class in automate.extensions.rpc.rpc)

F

 	
 	FileChangeSensor (class in automate.sensors.builtin_sensors)

 	filename (automate.sensors.builtin_sensors.FileChangeSensor attribute)

 	(automate.system.System attribute)

 	filter (automate.sensors.builtin_sensors.ShellSensor attribute)

 	
 	FloatActuator (class in automate.actuators.builtin_actuators)

 	flush() (automate.extensions.rpc.rpc.ExternalApi method)

 	(automate.system.System method)

 	frequency (automate.extensions.rpio.RpioPWMActuator attribute)

 	Func (class in automate.callables.builtin_callables)

G

 	
 	get_actuators() (automate.extensions.rpc.rpc.ExternalApi method)

 	get_as_datadict() (automate.statusobject.StatusObject method)

 	(automate.systemobject.SystemObject method)

 	get_default_callables() (automate.systemobject.SystemObject method)

 	get_program_status() (automate.statusobject.AbstractActuator method)

 	(automate.statusobject.StatusObject method)

 	get_sensors() (automate.extensions.rpc.rpc.ExternalApi method)

 	get_state() (automate.callable.AbstractCallable method)

 	get_status() (automate.extensions.rpc.rpc.ExternalApi method)

 	
 	get_status_display() (automate.statusobject.StatusObject method)

 	(automate.systemobject.SystemObject method)

 	get_unique_name() (automate.system.System method)

 	get_websensors() (automate.extensions.rpc.rpc.ExternalApi method)

 	get_wsgi_application() (automate.extensions.wsgi.TornadoService method)

 	GetService (class in automate.callables.builtin_callables)

 	give_str() (automate.callable.AbstractCallable method)

 	give_str_indented() (automate.callable.AbstractCallable method)

 	gpio_cleanup (automate.extensions.rpio.RpioService attribute)

H

 	
 	help() (automate.services.textui.TextUIService method)

 	hide_in_uml (automate.systemobject.SystemObject attribute)

 	host (automate.sensors.builtin_sensors.SocketSensor attribute)

 	
 	http_auth (automate.extensions.webui.WebService attribute)

 	http_ipaddr (automate.extensions.wsgi.TornadoService attribute)

 	http_port (automate.extensions.webui.WebService attribute)

 	(automate.extensions.wsgi.TornadoService attribute)

I

 	
 	If (class in automate.callables.builtin_callables)

 	IfElse (class in automate.callables.builtin_callables)

 	IntActuator (class in automate.actuators.builtin_actuators)

 	interval (automate.sensors.builtin_sensors.AbstractPollingSensor attribute)

 	
 	IntervalTimerSensor (class in automate.sensors.builtin_sensors)

 	inverted (automate.extensions.rpio.RpioActuator attribute)

 	(automate.extensions.rpio.RpioSensor attribute), [1]

 	is_alive() (automate.extensions.rpc.rpc.ExternalApi method)

 	is_program (automate.statusobject.StatusObject attribute)

L

 	
 	Less (class in automate.callables.builtin_callables)

 	load_or_create() (automate.system.System class method)

 	Log (class in automate.callables.builtin_callables)

 	log() (automate.extensions.rpc.rpc.ExternalApi method)

 	log_format (automate.system.System attribute)

 	log_handler (automate.system.System attribute)

 	log_length (automate.services.logstore.LogStoreService attribute)

 	log_level (automate.services.logstore.LogStoreService attribute)

 	(automate.system.System attribute)

 	
 	logfile (automate.system.System attribute)

 	logfile_format (automate.system.System attribute)

 	logger (automate.system.System attribute)

 	(automate.systemobject.SystemObject attribute)

 	LogStoreService (class in automate.services.logstore)

 	ls() (automate.services.textui.TextUIService method)

 	lsa() (automate.services.textui.TextUIService method)

 	lsp() (automate.services.textui.TextUIService method)

 	lss() (automate.services.textui.TextUIService method)

M

 	
 	Max (class in automate.callables.builtin_callables)

 	max_errors (automate.extensions.rpio.TemperatureSensor attribute)

 	max_jump (automate.extensions.rpio.TemperatureSensor attribute)

 	max_pulse (automate.extensions.arduino.ArduinoServoActuator attribute)

 	Method (class in automate.callables.builtin_callables)

 	
 	Min (class in automate.callables.builtin_callables)

 	min_pulse (automate.extensions.arduino.ArduinoServoActuator attribute)

 	More (class in automate.callables.builtin_callables)

 	most_recent_line (automate.services.logstore.LogStoreService attribute)

 	Mult (class in automate.callables.builtin_callables)

N

 	
 	name (automate.system.System attribute)

 	(automate.systemobject.SystemObject attribute)

 	name_to_system_object() (automate.callable.AbstractCallable method)

 	(automate.system.System method)

 	
 	namespace (automate.system.System attribute)

 	Neg (class in automate.callables.builtin_callables)

 	Not (class in automate.callables.builtin_callables)

 	num_threads (automate.extensions.wsgi.TornadoService attribute)

O

 	
 	obj (automate.callable.AbstractCallable attribute)

 	object_type (automate.systemobject.SystemObject attribute)

 	objects (automate.callable.AbstractCallable attribute)

 	objects_sorted (automate.system.System attribute)

 	OfType (class in automate.callables.builtin_callables)

 	on_activate (automate.program.ProgrammableSystemObject attribute)

 	
 	on_deactivate (automate.program.ProgrammableSystemObject attribute)

 	on_setup_callable (automate.callable.AbstractCallable attribute)

 	on_update (automate.program.ProgrammableSystemObject attribute)

 	OnlyTriggers (class in automate.callables.builtin_callables)

 	Or (class in automate.callables.builtin_callables)

 	ordinary_programs (automate.system.System attribute)

P

 	
 	pin (automate.extensions.arduino.AbstractArduinoActuator attribute)

 	(automate.extensions.arduino.AbstractArduinoSensor attribute)

 	PlantUMLService (class in automate.services.plantumlserv)

 	poll_active (automate.sensors.builtin_sensors.AbstractPollingSensor attribute)

 	PollingSensor (class in automate.sensors.builtin_sensors)

 	port (automate.extensions.rpio.RpioActuator attribute)

 	(automate.extensions.rpio.RpioPWMActuator attribute)

 	(automate.extensions.rpio.RpioSensor attribute), [1]

 	(automate.sensors.builtin_sensors.SocketSensor attribute)

 	post_init_trigger (automate.system.System attribute)

 	
 	pre_exit_trigger (automate.system.System attribute)

 	print_handler (automate.system.System attribute)

 	print_level (automate.system.System attribute)

 	priorities (automate.statusobject.AbstractActuator attribute)

 	priority (automate.program.ProgrammableSystemObject attribute)

 	Product (class in automate.callables.builtin_callables)

 	program (automate.statusobject.AbstractActuator attribute)

 	program_stack (automate.statusobject.AbstractActuator attribute)

 	program_status (automate.statusobject.AbstractActuator attribute)

 	ProgrammableSystemObject (class in automate.program)

 	programs (automate.system.System attribute)

R

 	
 	read_only (automate.extensions.webui.WebService attribute)

 	RegexMatch (class in automate.callables.builtin_callables)

 	RegexSearch (class in automate.callables.builtin_callables)

 	register_service() (automate.system.System method)

 	register_service_functions() (automate.system.System method)

 	ReloadService (class in automate.callables.builtin_callables)

 	RemoteFunc (class in automate.callables.builtin_callables)

 	request_service() (automate.system.System method)

 	
 	reset_delay (automate.statusobject.AbstractSensor attribute)

 	RpcService (class in automate.extensions.rpc)

 	rpio (automate.extensions.rpio.RpioService attribute)

 	RpioActuator (class in automate.extensions.rpio)

 	RpioPWMActuator (class in automate.extensions.rpio)

 	RpioSensor (class in automate.extensions.rpio), [1]

 	RpioService (class in automate.extensions.rpio)

 	Run (class in automate.callables.builtin_callables)

S

 	
 	safety_delay (automate.statusobject.StatusObject attribute)

 	safety_mode (automate.statusobject.StatusObject attribute)

 	save_state() (automate.system.System method)

 	sensors (automate.system.System attribute)

 	service_names (automate.system.System attribute)

 	services (automate.system.System attribute)

 	services_by_name (automate.system.System attribute)

 	set_object_status() (automate.extensions.rpc.rpc.ExternalApi method)

 	set_status() (automate.extensions.rpc.rpc.ExternalApi method)

 	(automate.statusobject.AbstractActuator method)

 	(automate.statusobject.AbstractSensor method)

 	(automate.statusobject.StatusObject method)

 	SetAttr (class in automate.callables.builtin_callables)

 	SetStatus (class in automate.callables.builtin_callables)

 	setup() (automate.service.AbstractService method)

 	(automate.systemobject.SystemObject method)

 	setup_callable_system() (automate.callable.AbstractCallable method)

 	setup_callables() (automate.systemobject.SystemObject method)

 	setup_system() (automate.systemobject.SystemObject method)

 	Shell (class in automate.callables.builtin_callables)

 	ShellSensor (class in automate.sensors.builtin_sensors)

 	show_actuator_details (automate.extensions.webui.WebService attribute)

 	silent (automate.statusobject.AbstractSensor attribute)

 	(automate.statusobject.StatusObject attribute)

 	
 	slave (automate.extensions.webui.WebService attribute)

 	(automate.statusobject.AbstractActuator attribute)

 	slave_actuator (automate.actuators.builtin_actuators.AbstractInterpolatingActuator attribute)

 	SocketSensor (class in automate.sensors.builtin_sensors)

 	speed (automate.actuators.builtin_actuators.ConstantSpeedActuator attribute)

 	ssl_certificate (automate.extensions.wsgi.TornadoService attribute)

 	ssl_private_key (automate.extensions.wsgi.TornadoService attribute)

 	state (automate.callable.AbstractCallable attribute)

 	static_dirs (automate.extensions.wsgi.TornadoService attribute)

 	status (automate.callable.AbstractCallable attribute)

 	(automate.program.ProgrammableSystemObject attribute)

 	(automate.statusobject.StatusObject attribute)

 	status_updater (automate.sensors.builtin_sensors.PollingSensor attribute)

 	StatusObject (class in automate.statusobject)

 	StatusSaverService (class in automate.services.statussaver)

 	stop (automate.sensors.builtin_sensors.SocketSensor attribute)

 	Sum (class in automate.callables.builtin_callables)

 	Swap (class in automate.callables.builtin_callables)

 	Switch (class in automate.callables.builtin_callables)

 	system (automate.systemobject.SystemObject attribute)

 	System (class in automate.system)

 	SystemObject (class in automate.systemobject)

T

 	
 	tags (automate.systemobject.SystemObject attribute)

 	targets (automate.callable.AbstractCallable attribute)

 	(automate.program.ProgrammableSystemObject attribute)

 	TemperatureSensor (class in automate.extensions.rpio)

 	text_ui() (automate.services.textui.TextUIService method)

 	TextUIService (class in automate.services.textui)

 	Threaded (class in automate.callables.builtin_callables)

 	timer_off (automate.sensors.builtin_sensors.CronTimerSensor attribute)

 	timer_on (automate.sensors.builtin_sensors.CronTimerSensor attribute)

 	
 	toggle_object_status() (automate.extensions.rpc.rpc.ExternalApi method)

 	TornadoService (class in automate.extensions.wsgi)

 	ToStr (class in automate.callables.builtin_callables)

 	TriggeredBy (class in automate.callables.builtin_callables)

 	triggers (automate.callable.AbstractCallable attribute)

 	(automate.program.ProgrammableSystemObject attribute)

 	TryExcept (class in automate.callables.builtin_callables)

 	two_phase_queue (automate.system.System attribute)

 	type (automate.sensors.builtin_sensors.PollingSensor attribute)

U

 	
 	update_condition (automate.program.ProgrammableSystemObject attribute)

 	update_program_stack() (automate.statusobject.AbstractActuator method)

 	update_status() (automate.statusobject.AbstractSensor method)

 	(automate.statusobject.StatusObject method)

 	url (automate.services.plantumlserv.PlantUMLService attribute)

 	user_editable (automate.statusobject.AbstractSensor attribute)

 	
 	user_tags (automate.extensions.webui.WebService attribute)

 	UserAnySensor (class in automate.sensors.builtin_sensors)

 	UserBoolSensor (class in automate.sensors.builtin_sensors)

 	UserEventSensor (class in automate.sensors.builtin_sensors)

 	UserFloatSensor (class in automate.sensors.builtin_sensors)

 	UserIntSensor (class in automate.sensors.builtin_sensors)

 	UserStrSensor (class in automate.sensors.builtin_sensors)

V

 	
 	value (automate.callable.AbstractCallable attribute)

 	Value (class in automate.callables.builtin_callables)

 	value_max (automate.sensors.builtin_sensors.AbstractNumericSensor attribute)

 	
 	value_min (automate.sensors.builtin_sensors.AbstractNumericSensor attribute)

 	view (automate.systemobject.SystemObject attribute)

 	view_tags (automate.extensions.rpc.RpcService attribute)

W

 	
 	WaitUntil (class in automate.callables.builtin_callables)

 	watch_flags (automate.sensors.builtin_sensors.FileChangeSensor attribute)

 	WebService (class in automate.extensions.webui)

 	websocket_timeout (automate.extensions.webui.WebService attribute)

 	
 	While (class in automate.callables.builtin_callables)

 	worker_autostart (automate.system.System attribute)

 	worker_thread (automate.system.System attribute)

 	write_puml() (automate.services.plantumlserv.PlantUMLService method)

 	write_svg() (automate.services.plantumlserv.PlantUMLService method)

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to Automate's Documentation!

 		Introduction

 		What is Automate?

 		Highlights

 		“Hello World” in Automate

 		Original application

 		How to Install Automate?

 		Automate Components

 		Programming Automate Objects

 		Programs

 		Actuator Status Manipulation

 		Program Features

 		StatusObjects

 		Creating Custom Sensors and Actuators

 		StatusObject Definition

 		Sensor Baseclass Definition

 		Actuator Baseclass Definition

 		Builtin Statusobject Types

 		Builtin Sensors

 		Builtin Actuators

 		Callables

 		Introduction

 		Deriving Custom Callables

 		Trigger and Target Collection

 		Referring to Other Objects in Callables

 		Callable Abstract Base Class definition

 		Builtin Callables

 		Builtin Callable Types

 		Automate System

 		Introduction

 		Groups

 		System State Saving and Restoring via Serialization

 		SystemObject

 		System Class Definition

 		SystemObjects Class Definition

 		Services

 		Introduction

 		Services Class Definitions

 		Builtin Services

 		Extensions

 		Web User Interface for Automate

 		Introduction

 		Installation

 		Example application using Web UI

 		WebService class definition

 		WSGI Support for Automate

 		Class definition

 		Remote Procedure Call Support for Automate

 		Introduction

 		Installation

 		Class definitions

 		Arduino Support for Automate

 		Introduction

 		Installation

 		Example application

 		Class definitions

 		Raspberry Pi GPIO Support for Automate

 		Introduction

 		Installation

 		Example application

 		Class definitions

 		Making your own Automate Extensions

 		Extension Development

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_images/inheritance-d593acd9102409673be5cc3f65c59850b701868f.png
Comparsiton |

~{ Fbsractaible |

| Fbstraccaar

Symembies

[Bbstacramsobece

SemisObiect

Grastars

Hastas

Hassticras |

Fbsrcsansr

Rbracanice |

ProgrammableSyseamObiect

Defurogram

_images/shell_view.png
Log console

working mode

Any Bython pted. You may refer to all your
automats o name attribute. You may do anything to
modify the by this field, for example, create new programs,

actuators, Some practical commands

- show this help mess b parameter, normal pydoc)
sp, lss - list actustors, programs, sensor

get_statusmsg —- print current system status

gui —- show GuI

quit —- quit cleanly

hon_stx (Filenane) & griten &
ob3.zet_value (valus) ob3

ob3.print_traits(

RelayActuator lamppul (by lamput
RelayActuator wve (by ajastinohielm
ket opened for session danxdydaszlimsneyqe

RelayhActuator lamppu3 (by lamput) sett

status changed to Trus
Boolactuator lamput (by valot_manusalimos etting status to Fa

RelayActuator lamppul (by lamput) status to False

ket closed for session d8nxdydoSzlimsneyge?]tw2SpbOctn2

I— ssion denxdydoszlimeneyqe?]tw2sphOctm2

Command

[1 | run |

Switch to multiline

_images/inheritance-d6c7ecc903a9970c3d4a83d37c4128a9ede5fd21.png
[AbstractStatusObject |

[[Comparetin |3 Swwsdbiea

Cnswa

Fastars

HasSwiathars

Symamobi

opmaET]

| Fmarcar

_images/inheritance-2da26a1baee396170ad909dcf27968d83b9cc176.png
CHasTraits

HasTraits

HasStrictTraits

v

SystemoObject

_images/counter_app.png
Types view

Shows objects grouped by types

Sensors Programs Actuators

Name Status Name Pri Act Name Status
IntervalTimerSensors prog 1 False IntActuator

periodical 1.0 target_actuator 42
UserBoolSensors preg 420
scive swich - dp_target_actuator 0

Copyright (C) 2014 Tuomas Airaksinen

_images/inheritance-984cb653aa0dc495a1dc4953c8ff34f74f96a469.png
AbswactStatusObject

ComparaHin | SwusObject | Absraasenser

Ghastars | Hadars HasSuiarats || SystamObjct | ProgammablaSystamObiect

_images/edit_view.png
UserBoolSensor

Name

sahkot

Description

Tags
group:Lamppurynma R

group:Ajastimet
group:root
group:Kytkimet

group:Sensors =

New tags

Priority

A

_images/main_view.png
User editable

Shows only user editable objects

Group_alarm Group_sensors Switch
silence_alarm False ph 65 . vesivahinko_kytkin False
sahkot valot_manuaalimoodi
. True - True
Group_kytkimet
lomamoodi
Info for sahkot False
vesivahinko_kytkin False Edit
testimoodi False
valot_manuaalimoodi Tre Default 1
Class name UserBoolSensor
Data type bool vedenvaihtomoodi False
valot_kytkin False
lomamoodi . Program features Web
Priority 4.0
testimoodi False On activate vesivahinko_kytkin False
Run(
vedenvaihtomoodi False tus (*lamppul®, 0), valot_manuaalimoodi True
tus ('lamppuz’, 0),
Setstatus (*lamppu3’, 0),
c02_manual_stop False Delay(lomamoodi False
300,
Run(
testimoodi False
Group_lamppuryhma 0,
0)
vedenvaihtomoodi False
lamp_on_del| 150 o
| alaraja_saavutettu False

lamp_off_dell go0 o

. . . On deactivate

_images/uml_view.png
UML

UML graph powered by PlantUML. Does not refresh automatically! Get plain text. Show/hide legend

_images/inheritance-2c64db90f95f656fe254cb58e6354351ef9d1dcf.png
[AbstractStatusObject |

FhswacAcutor

[[Comparetin |3 Swwsdbiea

AhswacEansor

Cnswa

Fastars

HasSwiathars

Symamobi

Programmablssysmmobies |

_images/inheritance-70560e296db60264c2d73077f45a25d15b939502.png
[Absmacchar |

[Compareion Sawshiet

[Ao

Chastras

HasSicraes

Smobi

o

{ Froramm by embea: || DefmkFrgam |

*{ program

